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Abstract

In this project we investigate quantum field theories in two dimensions which are
invariant under conformal transformations. Conformal transformations are those
which scale the metric by some local factor; demanding that a theory have these
transformations as symmetries places powerful constraints on the form of the the-
ory. We present the basic definitions and properties of conformal field theories, as
well as the calculations needed to derive these constraints.

We present the exactly known space of possible theories (the minimal models).
In light of the known result we present the conformal bootstrap, a more widely
applicable method which imposes an associative algebraic structure on the fields of
the theory, and from this obtains certain bounds on the field dimensions.
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1 Conformal Theories

1.1 Motivation

Conformal theories are those which describe scale independent physics. Intuitively, this
means the same phenomena are seen regardless of the scale of an observation. More rig-
orously, we insist that the physically measurable quantities in our theory (the correlators)
must be expressed in a way that is invariant under certain transformations (called the
conformal transformations). As it turns out, this is a powerful condition; for example, it
immediately fixes the 2 and 3-point correlators. It is remarkable that this is done without
any reference to a Lagrangian or a Hamiltonian; the only input is the symmetries of the
theory, and some reference to the energy-momentum tensor. Two excellent references
are the seminal work of Belavin, Polyakov and Zamolodchikov [1] and the notes of David
Tong [6]; the first for a lucid and rigorous treatment, the second for a less rigorous but
more intuitive overview.
These systems are not so rare as the stringent conditions may make them seem. A fa-
miliar example is the Ising model at its critical temperature (the temperature at which
it loses long-range spin alignment). Here, the correlation length diverges, and the same
fluctuations are seen at every length scale.

1.2 Conformal Symmetries

Let us be a bit more exact. Conformal field theories are those whose physics are invariant
under the set of conformal transformations. A conformal transformation is one which
changes the metric by scaling it by any function of the coordinates:

gµν(x)→ Λ2(x)gµν(x) (1)

The conformal symmetries form a group. This group is an extension of the Poincaré group
(translations, rotations, boosts) by dilations and the special conformal transformations.
The transformations of the Poincaré group leave the metric invariant, and so fulfill 1
trivially. The scale factor Λ2(x) is also easy to work out for dilations:

xµ → λxµ

=⇒ gµν → λ−2gµν

For the special conformal transformations (SCTs) the scaling is less obvious. A special
conformal transformation is defined as an inversion, followed by a translation (along a
vector typically denoted bµ), followed by another inversion. 1 The translation does not
affect the metric, so by calculating the change in the metric produced by an inversion,
we can find the change produced by the SCT. We find:

xµ → xµ

x2

=⇒ gµν → (x2)2gµν

1We use this as, unlike inversion, SCTs have a differentiable parameter.
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Finite form Infinitesimal form Generator
Translations x′µ = xµ + aµ x′µ = xµ + εµ Pµ = −i∂µ
Rotations x′µ = λxµ x′µ = xµ + λxµ Lµν = i(xµ∂ν − xν∂µ)
Dilations x′µ = Mµ

ν x
ν x′µ = xµ + ωµνx

ν D = −ixµ∂µ
SCTs x′µ = xµ−bµx2

1−2b·x+x2b2 x′µ = xµ + bµx2 − 2xµb · x Kµ = −i(2xµxν∂ν − x2∂µ)

Table 1: Forms of the conformal transformations

Thus the first inversion gives a factor of (x2)2, and the second a factor of the square of
(x

µ

x2
− bµ)(xµ

x2
− bµ). Multiplying, we obtain the scale factor:

Λ2(x) = (1− 2b · x + x2b2)2

These generators obey the following commutation relations:

[D,Pµ] = iPµ (2)

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(gµνD − Lµν)
[Kρ, Lµν ] = i(gρµKν − gρνKµ)

[Pρ, Lµν ] = i(gρµPν − gρνPµ)

[Lρσ, Lµν ] = i(gσµLρν − gσνLρµ + gρµLνσ − gρνLµσ)

It is not a coincidence that these relations are reminiscent of the commutation relations
for rotations; this is in fact isomorphic to SO(d+ 1, 1), though we will not use that fact
here. See section 2.1 of [2] and section 4.1 of [3] for a more in-depth exploration of these
topics, including derivations showing these are indeed the only globally defined conformal
transformations.

1.3 Operator Product Expansion

Another hallmark of conformal field theories is the assumption of an operator product
expansion. We start with some set of fields, known as the primary fields. We demand
that these transform in a particular way (defined in 2.3). This demand ensures that we
can fix the form of their correlators, as we will see in 4.2. Then, we assume that the
product2 of two fields can always be expanded in terms of local fields (we call this an
OPE); this expansion will obey some algebra.

Say we take the expansion of a primary field φ with the energy-momentum tensor. We
will obtain some sum of local fields. However, these fields will not be part of our set of pri-
mary fields (they will not transform correctly). We call these extra fields descendants of φ.

What of the expansion between two primary fields? This expansion can contain other

2Time ordered product, inside a correlator.
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primary fields, as well as their descendants. If we have not already included these pri-
mary fields in our algebra, we must now include them. However, this means we must
also include all the new primaries generated by expanding these additional fields with our
original fields. At first it appears that the theory will get quite unwieldy very quickly,
however there are two points that give us hope. Firstly, it is possible that this process
of adding fields will not continue forever; we may find some finite set of fields for which
this algebra is closed. Indeed, this turns out to be the case for a class of theories known
as the minimal models (see end of 3.4). Secondly, as we will see in 5.4, the symmetries
of the theory allow us to express the correlator of any descendant fields in terms of the
correlator of the primary fields. As we have already fixed these, this means we have a
chance at obtaining something very rare: an exactly solvable quantum field theory.
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2 Two Dimensions: A Safari

2.1 Complex Coordinates

Before diving in, we present some necessary definitions. In the previous section, the con-
formal transformations discussed were all global conformal transformations. This means
they are well behaved everywhere on the Riemann sphere. However, our physics will
also be sensitive to transformations which are only locally defined. The algebra of these
local conformal transformations will turn out be quite useful, due to the fact it is infinite
dimensional. We will make extensive use of the powerful machinery of complex analysis
to study this, relying heavily on tools such as Laurent expansions and the residue theorem.

First, some definitions:

z = x+ iy x =
1

2
(z + z̄) (3)

z̄ = x− iy y =
1

2i
(z − z̄)

∂z =
1

2
(∂x − i∂y) ∂x = ∂z + ∂z̄

∂z̄ =
1

2
(∂x + i∂y) ∂y = i(∂z − ∂z̄)

We consider z and z̄ to be independent variables, only setting z̄ = z∗ at the end.

Transforming the metric we find:

gµν =

(
0 1

2
1
2

0

)
(4)

gµν =

(
0 2
2 0

)

In these coordinates the Cauchy-Riemann equations greatly simplify:

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y

⇐⇒ ∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+
∂u

∂y

)
= 0

⇐⇒ (∂x + i∂y)(u+ iv) = 0

⇐⇒ ∂z̄f = 0

for f(x, y) = u(x, y) + iv(x, y).

How do these coordinates relate to our familiar ones? We will deal with one time and
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one space dimension (x0 and x1), imposing periodic boundary conditions on the spatial
coordinate. These are coordinates on the surface of a cylinder, with space being cyclic
and time running along the axis. Our z and z̄ are related to these by:

z = ex
0+ix1

z̄ = ex
0−ix1

This maps the cylinder to the complex plane, with the infinite past being mapped to the
origin. Slices of constant time become circles, time ordering becomes radial ordering and
the time evolution operator becomes the dilation operator.

2.2 The Energy-Momentum Tensor

We define the energy-momentum tensor as the variation of the action with respect to the
metric

T µν =
1√
−g

δS

δgµν

under an infinitesimal coordinate change x′µ → xµ + εµ. This particular formulation is
called the Belinfante-Rosenfeld energy-momentum tensor, and is automatically symmet-
ric. We see that:

δS =

∫
d2xT µνδgµν

For a conformal transformation the metric must be scaled, so δgµν = f(x)gµν

δS =

∫
d2xT µνf(x)gµν

δS =

∫
d2xT µµ f(x)

If this arbitrary local conformal transformation is a symmetry of the theory, then δS = 0,
so we obtain that the energy-momentum tensor of a conformal field theory is traceless.

We can use this to show something interesting. First, see that under an infinitesimal
transformations x′µ → xµ + εµ, the metric transforms as follows:

g′µν = gαβ(δαµ + ∂µε
α)(δβν + ∂νε

β)

≈ gµν + ∂µεν + ∂νεµ
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Now, consider the quantity jµ = T µνεν :

∂µj
µ = ∂µ(T µν)εν + T µν∂µεν

= T µν∂µεν

=
1

2
T µν(∂µεν + ∂νεµ)

=
1

2
T µν(δgµν)

=
1

2
T µν(f(x)gµν)

=
1

2
T µµ f(x)

= 0

where we have used that the energy-momentum tensor is symmetric and conserved. We
have shown that if this is a conformal transformation, then jµ is the conserved current
associated with it.

What does tracelessness mean in complex coordinates? We see:

T µµ = gµνT
µν =

1

2
T zz̄ +

1

2
T z̄z = 0

Using the symmetry of the energy-momentum tensor, this implies that T z̄z = 0.
We can learn more about T using the fact that translation symmetry implies that it is
conserved.
For ν = z

∂µT
µν = 0

=⇒ ∂zT
zz + ∂z̄T

z̄z = 0

=⇒ ∂zT
zz = 0

=⇒ ∂zTz̄z̄ = 0

Where we used the metric to lower indices to obtain that Tz̄z̄ is an antichiral field.
Similarly, for ν = z̄

∂µT
µν = 0 (5)

=⇒ ∂zT
zz̄ + ∂z̄T

z̄z̄ = 0

=⇒ ∂z̄T
z̄z̄ = 0

=⇒ ∂z̄Tzz = 0

we obtain that Tzz is a chiral field.
In light of this, we define T (z) = Tzz(z, z̄) and T̄ (z̄) = Tz̄z̄(z, z̄)

2.3 Taxonomy of Fields

Here we categorise the fields which will populate our theory. While the physics must be
invariant under conformal transformations, the fields themselves may not be; they merely
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have to form a representation of the symmetry algebra.

A primary field φ(z, z̄) is one which, under a conformal transformation (z, z̄) 7→ (f(z), f̄(z̄)),
transforms as

φ(z, z̄) 7→ φ′(z, z̄) =

(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
φ(f(z), f̄(z̄))

h and h̄ are called the conformal weights of the field. All of the fields in our theory will
either be primaries or descendants of primaries (that is, they appear in the Tφ OPE, or
the OPE of T with a descendant; note that this means that T itself is a descendant of the
identity field, the vacuum). A primary and its descendants form a representation of the
symmetry algebra, transforming among themselves under conformal transformations.

If a field transforms in the way defined above for only the global conformal transfor-
mations, it is called a quasi-primary field. We define a chiral (or anti-chiral) field as one
which only depends on z (or z̄).

The primary fields are the foundations of the theory; given the correlators between the
primary fields, we can find the correlators of any of their descendants.

2.4 Holomorphic Functions are Conformal

A conformal transformation is one which scales the metric. Say we apply such a trans-
formation to some metric:

x→ u = u(x, y)

y → v = v(x, y)

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

From which we obtain the two conditions:

∂x

∂u

2

+
∂y

∂u

2

=
∂x

∂v

2

+
∂y

∂v

2

∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
= 0

We obtain two solutions:

∂x

∂u
= ±∂y

∂v
∂x

∂v
= ∓∂y

∂u

We see that if we write f(x, y) = u(x, y) + iv(x, y) the first solution becomes the Cauchy-
Riemann Equations (∂z̄f = 0) and the second becomes the equations defining antiholo-
morphicity (∂zf = 0). Thus, in two dimensions, we have a great freedom in choosing our
transformation: all holomorphic transformations are conformal.
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2.5 Symmetry Algebras

2.5.1 Witt Algebra

The Witt algebra is the algebra of the infinitesimal conformal transformations. While the
global conformal transformations must be holomorphic on the entire Riemann sphere, the
local conformal transformations need only be holomorphic on some open set; in general,
they may be meromorphic.
Thus, any infinitesimal transformation of the coordinates can be expanded in a Laurent
series to obtain:

z′ = z + ε(z) = z +
∞∑

n=−∞

εn(−zn+1)

z̄′ = z̄ + ε̄(z̄) = z̄ +
∞∑

n=−∞

ε̄n(−z̄n+1)

for some constants εn and ε̄n.
Motivated by this we define ln = −zn+1∂z and l̄n = −z̄n+1∂z̄ for n ∈ Z as generators of
these transformations. The commutator of these elements can then be seen to be:

[lm, ln] = (m− n)lm+n (6)

with the l̄n having a similar commutator, and the two sets commuting with each other.
This is known as the Witt algebra.
Note that for n < −1 the generators are not defined at z = 0. Similarly, at z = ∞, the
generators corresponding to n > 1 are not defined; this can be seen by performing an
inversion. Thus, the generators corresponding to the global conformal transformations
are l−1, l0 and l1.

What is the direct relation between these generators and the global conformal trans-
formations? To determine this, let us switch to cartesian coordinates:

l−1 = −∂z = −1

2
(∂x − i∂y)

l̄−1 = −∂z̄ = −1

2
(∂x + i∂y)

l0 = −z∂z = −1

2
(x+ iy)(∂x − i∂y)

l̄0 = −z̄∂z̄ = −1

2
(x− iy)(∂x + i∂y)

l1 = −z2∂z = −1

2
(x+ iy)2(∂x − i∂y) = −1

2
(x2 + 2ixy − y2)(∂x − i∂y)

l̄1 = −z̄2∂z̄ = −1

2
(x− iy)2(∂x + i∂y) = −1

2
(x2 − 2ixy − y2)(∂x + i∂y)
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Comparing this to 1 we find the relations:

Px = i(l̄−1 + l−1) (7)

Py = l̄−1 − l−1

Lxy = l0 − l̄0
D = −i(l0 + l̄0)

Kx = i(l1 + l̄1)

Ky = l1 − l̄1

2.5.2 Virasoro Algebra

The generators of a symmetry act on operators through their adjoint representation:

[ln, φ] = δnφ

We know that these δn must obey the Witt algebra; they should combine in the same
way the conformal transformations themselves do. However, this does not mean that the
generators of the symmetry also obey this same algebra. All we know is that:

[adlm , adln ] = (m− n)adlm+n

The ln may obey the Witt algebra, or they may obey it up to the addition of a term
that commutes with all other elements of the algebra. Allowing for this term results in
an algebra known as the Virasoro algebra.
The Virasoro algebra has elements Ln for n ∈ Z. The commutator of these elements is
defined by:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (8)

This is a central extension to the Witt algebra. It is in fact the only non-trivial central
extension; the added term is the only way to add a central term (one which commutes
with all other elements of the algebra) while retaining bilinearity and the Jacobi identity
as properties of the commutator. c is known as the central charge, with the factor 1

12

being conventional. We shall see later that the central extension is very important; the
only conformal field theory with c = 0 is the one containing only the vacuum state.

For n ∈ {−1, 0, 1} we obtain a simpler subalgebra:

[L0, L1] = −L1 (9)

[L1, L−1] = 2L0

[L−1, L0] = −L−1

Note that the central extension does not come into play here, so 7 is still valid. In two
dimensions the algebra of global conformal transformations is isomorphic to the direct
sum of two copies of this subalgebra. This algebra is sl(2,R), the same algebra obeyed
by Jz, J+, J−, the angular momentum operators. We use L̄n to denote generators from
the second copy.
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3 Representation Theory of the Virasoro Algebra

3.1 Highest Weight Representations

The energy eigenstates of a conformal field theory form a representation of the Virasoro
algebra. We will study what is known as the highest weight representation. This involves
using physical constraints to argue the existence of a state highest conformal weight
(lowest energy). Other states in the representation (the descendants of this state) are
found by acting on it with the Ln.
In the quantization of angular momentum, the eigenstates of Jz span the representation
space and J+, J− are used as raising and lowering operators. Then, by imposing that
our states must have non-negative norm (this condition is known as unitarity) we obtain
the well-known result that for this to be a sensible theory of angular momentum, j, the
highest eigenvalue of Jz, must be an integer or half-integer, and that a complete set of
states is given by applying J− at most 2j times.
We shall do something similar here in our search for a representation of the Virasoro
algebra. L0 will act as our Jz; we shall use the eigenstates of this operator as a basis for
the space, by choosing it to be diagonal. As can be seen from the commutation relation:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

none of the Ln commute with each other, so this is the only operator we can diagonalise.
Instead of just having J+ and J−, the Virasoro algebra gives us a plethora of raising and
lowering operators to play with. Consider some state |m〉 with eigenvalue m:

L0 (Lk|m〉) = (LkL0 + [L0, Lk]) |m〉
= (LkL0 + (0− k)L0+k) |m〉
= (Lkm− kLk) |m〉
= (m− k)Lk|m〉

For n > 0, the Ln act to create states with lower eigenvalues, while the L−n act to create
states with higher eigenvalues.

3.2 Unitarity Constraints

In 4.2 we will see that these eigenvalues come into the correlator between two fields. If
we were allowed to act to create a state with a negative eigenvalue, this would result in
the 2-point function of that field increasing without bound at large distances. Thus, to
ensure a sensible physical interpretation, we must assume the existence of a state with
smallest eigenvalue; conventionally this is called the highest weight state or primary state
and is denoted by |h〉. This is defined by L0|h〉 = h and:

Ln|h〉 = 0, n > 0

We also define a quasi-primary state as any state that vanishes when acted upon by L1.
A descendant of a primary state, created by acting on it with L−k1L−k2 ...L−kp , say, will
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have eigenvalue h+ k1 + k2 + ...+ kp.
We can also define an inner product in this space by setting L†p = L−p. For example, let
us calculate the norm of L−1|h〉:

||L−1|h〉|| = 〈h|L1L−1|h〉
= 〈h|L−1L1 + 2L0|h〉
= 2h〈h|h〉

Where we have used the commutator and defined (|h〉)† = 〈h|. For this to have a sensible
physical interpretation, we must therefore have that h is positive real. The vacuum state
has h = 0; it is annihilated by L0, so invariant under the time evolution operator.

Let’s try and obtain a condition on c, by finding the norm of L−p|h〉.

||L−p|h〉|| = 〈h|LpL−p|h〉

= 〈h|L−pLp + 2pL0 +
c

12
(p3 − p)|h〉

= p
(

2h+
c

12
(p2 − 1)

)
〈h|h〉

If c is negative, then no matter what h is, we can always get a large enough p such that
the norm is negative. Thus, c must be positive.

It is obvious that this is a powerful method for constraining the values of h and c which
correspond to a physically sensible theory; with minimal effort and taking only two simple
examples we have already obtained two such constraints.

3.3 Null Vectors

The conditions defining a highest weight state demand that it is annihilated by all raising
operators. In that case, the descendants of that state form a representation of the Virasoro
algebra. Is this representation irreducible? It is possible that some linear combination of
descendants of the highest weight state might also be annihilated by all raising operators.
For example, consider the state:

|χ〉 = (αL−2 + L2
−1) |h〉

We want to find α such that this vector is annihilated by all Ln with n > 0. It is sufficient
to show it is annihilated by L1 and L2; using the Virasoro algebra we can see this from
Ln = 1

n−2
(Ln−1L1 − L1Ln−1).

Applying L1:

L1 |χ〉 = L1(αL−2 + L2
−1) |h〉

= (α(L−2L1 + 3L−1) + (L−1L1 + 2L0)L−1) |h〉
= (α(0 + 3L−1) + L−1(L−1L1 + 2L0) + 2(L−1L0 + L−1)) |h〉
= (α(3L−1) + L−1(0 + 2h) + 2(L−1h+ L−1)) |h〉
= (3α + 4h+ 2) |h〉

15



So we must have that α = −4h+2
3

.
Applying L2:

L2 |χ〉 = L2(αL−2 + L2
−1) |h〉

=
(
α
(
L−2L2 + 4L0 +

c

12
(6)
)

+ (L−1L2 + 3L1)L−1

)
|h〉

=
(
α
(

4h+
c

2

)
+ 6h

)
|h〉

For this to vanish, we must have:

h =
1

16

(
5− c±

√
(c− 1)(c− 25)

)
(10)

So, if we have a theory with c and h obeying this relation, then |χ〉 is a new highest weight
state; its descendents will form another representation of the Virasoro algebra. We call
this a null vector. If we want our representation to be irreducible, we must quotient out
this subrepresentation; that is, if two states differ by a null vector or a descendent of
a null vector, we say they are equal. We do this by setting all the null vectors in our
algebra to 0. Can we do this consistently? If two states differ by only a null vector, do
their inner products with other states match? The inner product of a null vector with
a state of different eigenvalue will be zero, so we need only consider states at the same
level. Let |χ〉 be a null vector and |φ〉 be a state at the same level. Then 〈φ| will be 〈h|
multiplied on the right by some combination of Ln with n > 0. Thus, the product will
vanish. Note that this also implies the norm of |χ〉 is zero. As a result of this we can set
all null vectors and their descendants to zero, seriously reducing the number of elements
in our algebra.

3.4 Kac Determinant

We can consider these inner products in more general terms. The inner product of two
states with different eigenvalues will always be zero, so we will learn nothing new from
considering these. If we consider the matrix M of all possible inner products, arranged in
increasing order of eigenvalue, it will thus be block diagonal. It must also be Hermitian,
as we impose that 〈a|b〉 is always real. We can therefore find a unitary matrix U that
will diagonalise M . The diagonal elements of this matrix are the eigenvalues of M . Let
D = U †MU . If one of the eigenvalues is negative, we can easily find a ~b such that:

~btD~b < 0

⇐⇒ ~btU †MU~b < 0

⇐⇒
(
U~b
)†
M
(
U~b
)
< 0

so the components of U~b will give us the coefficients of a linear combination of states that
will have negative norm. To avoid this, we must impose that no such negative eigenvalue
exists. This implies that the determinant, as the product of the eigenvalues, must be
positive.
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Luckily, there exists a general formula for the determinant of each block of M (which we
will denote by M (l)):

detM (l) = αl
∏
rs≤l

(h− hr,s(c))p[l−rs] (11)

where r, s ≥ 1 are integers, p[n] is the partition function (0 if n < 0) and αl is some
known positive constant. This is known as the Kac determinant.

It is usual to parametrise hr,s(c) by parameter m:

hr,s(m) =
((m+ 1)r −ms)2 − 1

4m(m+ 1)

c(m) = 1− 6

m(m+ 1)

Here m is defined implicitly in terms of c. However, if we write hr,s(c) explicitly:

hr,s(c) =
24(r − s)2 + (c− 1)(4− 2(r2 + s2)) + 2(r2 − s2)

√
(1− c)(25− c))

96

we notice that 10 matches this exactly, for r = 2 and s = 1, or r = 1 and s = 2. This
should not surprise us; the values at which the Kac determinant vanishes are exactly
those at which there exists a state of zero norm.

The entire region with h > 0 and c > 1 is unitary. This can be shown using the Kac
determinant, but we will not do so here; see section 7.2.2 of [3] for a proof. Instead, we
will concentrate on the region 0 < c < 1. While finding conditions that are sufficient for
unitarity in this region is difficult, we can (following section 7.2.3 of [3]) at least argue for
some which are necessary. Each hr,s consists of two branches (for each sign of the square
root) which meet at c = 1.

hr,s(1) =
(r − s)2

4

As p[0] = 1, each factor of h− hr,s appears only linearly when rs = l. This means that if
we vary the value of c over this line, the Kac determinant will change sign, and we will
reach a region with values of h, c that do not correspond to unitary theories. Taking c
very close to 1, and so keeping only the lowest order terms in c− 1:

hr,s(c) ≈
24(r − s)2 ± 2(r2 − s2)

√
24(1− c)

96

Suppose we keep r − s fixed, but increase the product rs. We rewrite the above as:

hr,s(c) ≈
24(r − s)2 ± 2(r − s)

√
(r − s)2 + 4rs

√
24(1− c)

96

It is now clear that for c very close to 1, the line hr,s(c) (for a given r− s) will get closer
and closer to vertical as rs increases. This hr,s will first become relevant to the Kac
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determinant at l = rs, where it will appear linearly. Thus, by starting in the region c > 1
and reducing c until it crosses into c < 1, we can always find a level at which our path
will be forced to cross a curve appearing linearly in the determinant, so causing the Kac
determinant to become negative. The only points which escape this argument are those
which end up lying on these curves. Here the determinant is zero, so we cannot easily
extract whether or not these are unitary.

It can be shown that the only positive values of (c, h) with c strictly less than one that
are unitary are those which correspond to hr,s and c above with integer m ≥ 2. We also
now restrict 1 ≤ r < m and 1 ≤ s ≤ r. These are known as the minimal models.
It is remarkable that the possible conformal dimensions are restricted in this way. One
result we can immeditely note is that any conformal field theory with c = 0 contains only
the vacuum state. For c = 0, the above formula gives m = 2; this implies that r = 1 and
thus s = 1, so there is only one possible field. Seeing that h1,1 = 0 reveals this state as
the vaccum state.

The critical Ising model is described by the minimal model with m = 3. The Ising
model has three fields; the identity field I (the vacuum), the spin field σ and the energy
field ε. From the above, we see c = 1

2
and:

h1,1 = 0

h2,1 =
1

2

h2,2 =
1

16

are the conformal dimensions of the three fields.
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4 Constraining the Correlators

4.1 Using the Symmetries

How do the Ln act on the states in our theory? The states we defined above are actually
the boundary conditions of our theory. If we have some operator ĥ that acts on the
vacuum to create a state ĥ(z, z̄) |0〉, then |h〉 is the limit of this state as z, z̄ both go to
zero. Similarly, 〈h| is the limit of the conjugate of this state as z, z̄ both go to ∞. These
are asymptotic states; imagine some interaction between particles say, free in the infinite
past, interacting for a period, then free again in the infinite future.
Since we know how the Ln act on these asymptotic states we can determine how they act
on states away from the origin by using a translation in z (or, similarly, z̄).

Consider, for brevity, a chiral state |φ(z)〉 of conformal dimension h.
Using [L0, L−1] = L−1:

L0 |φ(z)〉 = L0e
zL−1 |φ(0)〉

= L0

(
∞∑
n=0

1

n!
znLn−1

)
|φ(0)〉

=

(
∞∑
n=0

1

n!
znLn−1 (L0 + n)

)
|φ(0)〉

=

(
ezL−1L0 + zL−1

∞∑
n=1

1

(n− 1)!
zn−1Ln−1

−1

)
|φ(0)〉

=
(
ezL−1L0 + zL−1e

zL−1
)
|φ(0)〉

= (h+ z∂z) |φ(z)〉

Using [L1, L−1] = 2L0:

L1 |φ(z)〉 = L1e
zL−1 |φ(0)〉

= L1

(
∞∑
n=0

1

n!
znLn−1

)
|φ(0)〉

=
∞∑
n=0

1

n!
zn
(
Ln−1L1 + 2nLn−1

−1 L0 + (n)(n− 1)Ln−1
−1

)
|φ(0)〉

=

(
ezL−1L1 + 2z

∞∑
n=1

1

(n− 1)!
zn−1Ln−1

−1 L0 + z2

∞∑
n=2

1

(n− 2)!
zn−2Ln−1

−1

)
|φ(0)〉

=
(
ezL−1L1 + 2zezL−1L0 + z2ezL−1L−1

)
|φ(0)〉

=
(
0 + 2zh+ z2∂z

)
|φ(z)〉

=
(
z2∂z + 2zh

)
|φ(z)〉

In the previous two calculations we commuted powers of Ln using relations easily verified
by induction. We also used that L1 |φ(0)〉 = 0, as |φ(0)〉 is a highest weight state.
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So for some correlator f of many fields φi (dimension hi) at position zi we have (defining
∂i = ∂

∂zi
):

L−1f = 0 =
∑
i

∂if (12)

L0f = 0 =
∑
i

(zi∂i + hi)f

L1f = 0 =
∑
i

(z2
i ∂i + 2hizi)f

as the action of these generators must be zero if f is a correlator. Thus, we have three
differential equations the correlators must obey.

We can make some general statements here about the first and second equations. Under
a change of coordinates:

w1 = z1

w2 = z2 − z1

w3 = z3 − z1

...

wn = zn − z1

we see that the first equation becomes ∂f
∂w1

= 0; f can only depend on the differences
between the zi (translational invariance). Motivated by this, define zij = zi − zj.
The second equation ensures the correct scaling of f ; it essentially shows the effect of the
Euler operator on the correlator.

4.2 Fixing the 2 and 3-point Correlators

4.2.1 The 2-point correlator

We want to fix the form of f(zi, zj) = 〈φi(zi)φj(zj)〉.
The above equations 12 take the form:

L−1f = 0 = (∂i + ∂j)f

L0f = 0 = (zi∂i + hi + zj∂j + hj)f

L1f = 0 = (z2
i ∂i + 2hizi + z2

j∂j + 2hjzj)f

As shown, the first eqaution implies f(zi, zj) = f(zij).
Again using the first equation, the second simplifies to:

(zi − zj)∂if = −(hi + hj)f

=⇒ f(zij) =
dij

z
hi+hj
ij
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for some constant dij.
Finally, using the third equation, we obtain a relation between hi and hj. In the following
we use the first equation, and that (zi − zj)∂if = −(hi + hj)f .

(z2
i ∂i + 2hizi + z2

j∂j + 2hjzj)f = 0

=⇒ (z2
i ∂i + 2hizi − z2

j∂i + 2hjzj)f = 0

=⇒ (z2
i − z2

j )∂if = −2(hizi + hjzj)f

=⇒ (zi + zj)(−hi − hj)f = −2(hizi + hjzj)f

=⇒ zihj + zjhi = hizi + hjzj

=⇒ zi(hj − hi) = (hj − hi)zj
=⇒ hj = hi

We see that either f = 0 or hi = hj.
This gives our final result for the 2-point correlator:

〈φi(zi)φj(zj)〉 =
dijδhi,hj

(z1 − z2)2hi
(13)

where the dij are called structure constants. We will choose the basis of our fields so that
dij = 1

4.2.2 The 3-point correlator

Here we want to fix the form of f(zi, zj, zk) = 〈φi(zi)φj(zj)φk(zk)〉.
By translation invariance (the first equation), we have again that f can only depend on
the differences between the positions. By dilation invariance (the second equation) we
obtain:

(zi∂i + zj∂j + zk∂k + hi + hj + hk)f = 0

Now we can change coordinates to zij, zjk, zki (note this is not invertible), so:

∂i = ∂ij − ∂ki
∂j = ∂jk − ∂ij
∂k = ∂ki − ∂jk

We obtain:

(zij∂ij + zjk∂jk + zki∂ki + hi + hj + hk)f(zij, zjk, zki) = 0

The solution of this is

f(zij, zjk, zki) =
Cijk

zaijz
b
jkz

c
ki
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with theory dependent structure constants Cijk, and a+ b+ c = hi + hj + hk. We could
also have a sum of such functions, with different values of a, b, c, but as we shall see this
is prevented by our third condition, SCT invariance.
Instead of using the third differential equation, we shall directly use that f must be
invariant under the transformation z 7→ −1

z
. This implies our fields transform with a

factor of
(

1
z2

)h
, and that z12 7→ z12

z1z2
. To impose invariance, we must have:

〈φi(zi)φj(zj)φk(zk)〉 =

(
1

z2
i

)hi ( 1

z2
j

)hj ( 1

z2
k

)hk
〈φi
(
− 1

zi

)
φj

(
− 1

zj

)
φk

(
− 1

zk

)
〉

=⇒ f(zi, zj, zk) =

(
1

z2
i

)hi ( 1

z2
j

)hj ( 1

z2
k

)hk
f

(
− 1

zi
,− 1

zj
,− 1

zk

)
=⇒ 1

zaijz
b
jkz

c
ki

=
1

z2hi
i z

2hj
j z2hk

k

1

zaijz
b
jkz

c
ki

(zizj)
a(zjzk)

b(zkzi)
c

=⇒ 1 = za+c−2hi
i z

a+b−2hj
j zb+c−2hk

k

=⇒ a+ c = 2hi

a+ b = 2hj

b+ c = 2hk

From which we obtain:

a = h1 + h2 − h3

b = h2 + h3 − h1

c = h1 + h3 − h2

4.3 Failing to Fix the 4-Point Correlator

After our success in fixing the 2 and 3-point correlators, one would naturally hope to fix
the 4-point in a similar fashion. Unfortunately, any such attempt is doomed to failure,
due to the existence of the so-called cross-ratios:

u =
z12z34

z13z24

ū =
z̄12z̄34

z̄13z̄24

These ratios are manifestly translation, dilation and rotation invariant. It can also easily
be shown that they are invariant under inversions. Thus, the 4-point correlator can
depend on these ratios in an arbitrary way. The arguments we have used thus far are
insufficient.
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5 The Operator Product Expansion

5.1 Terms of Use

An operator product expansion (OPE) is a very useful axiom of conformal field theory.
We assume that inside a correlator, the product of two fields (at z and w say) can be
written as a Laurent expansion in z − w, convergent in some punctured disk; the radius
of convergence is equal to the distance to the nearest other operator in the correlator.
The coefficients are local fields. The OPE can include log(z) terms, but in that case it
is generally more useful to work with the derivative of that OPE, as this often separates
the OPE into holomorphic and anti-holomorphic parts.

5.2 The Tφ OPE and the Ward Identity

Following section 2.5 of [2] we will find the OPE of the energy-momentum tensor with
any primary field. Recall that a chiral primary field is one such that under any conformal
transformation z 7→ f(z):

φ(z) 7→ φ′(z) =

(
∂f

∂z

)h
φ(f(z))

Say f(z) = z + ε(z), with ε small. Then φ(z + ε(z)) ≈ φ(z) + ε∂zφ and ∂f
∂z
≈ 1 + ∂zε. As

a result:

φ(z) 7→ φ′(z) ≈ (φ(z) + ε∂zφ)(1 + h∂zε)

≈ φ(z) + ε∂zφ+ hφ(z)∂zε

If φ had a z̄ dependence we would add a similar set of terms involving ε̄.

Recall that jµ = T µνεν is a conserved current. We can obtain a conserved charge by
integrating over a slice of constant time. In our coordinates, this amounts to doing a
contour integral over a circle. Let’s investigate the variation of some chiral field φ under
a transformation generated by a conserved charge Q:

Q =
1

2πi

∮
dzT (z)ε(z)

As usual, for a field with z̄ dependence we would have another term.
The variation of φ under this transformation takes the form:

δφ(w) = [Q, φ]

=
1

2πi

∮
dz[T (z)ε(z), φ(w)]

=
1

2πi

∮
dzT (z)ε(z)φ(w)− 1

2πi

∮
dzφ(w)T (z)ε(z)

=
1

2πi

∮
w

dzR(T (z)ε(z)φ(w))
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This expansion is taking place inside a correlator, so these products must be time ordered.
Here, this amounts to radial ordering, which we have denoted by R(). This means that in
the first term, w is inside the contour of integration, while in the second, it is outside. The
difference in sign between the integrals only amounts to them being taken in opposite
directions. This means these integrals almost completely cancel out, leaving only the
integral of the radially ordered product over a contour circling w.
So:

δφ(w) =
1

2πi

∮
w

dzR(T (z)ε(z)φ(w))

where the integral is taken over a contour around w. However, we already have an
expression for δφ above:

δφ = ε(w)∂zφ+ hφ(w)∂zε

If we want to match these terms, we will have to expand ε(z) = ε(w) +∂zε(w)(z−w) + ...
and look at the residues of the integral. Thus:

ε(w)∂zφ+ hφ(w)∂zε =
1

2πi

∮
w

dzR(T (z)(ε(w) + ∂zε(w)(z − w) + ...)φ(w))

=⇒ R(T (z)φ(w)) =
h

(z − w)2
φ(w) +

1

z − w
∂wφ(w) + ...

We have obtained all the singular terms in the Tφ OPE, for any conformal field theory.

This can be extended easily to obtain a further result. Consider some correlator of
T (z) with a string of chiral primary fields:

〈T (z)φ1(z1)...φn(zn)〉

Performing the same conformal transformation as above, each of the φi will vary accord-
ingly. Following the same logic, we wrap the contour around the zi, obtaining a sum of
integrals. Performing the integrals, we arrive at the conformal Ward identity:

〈T (z)φ1(z1)...φn(zn)〉 =
n∑
i=1

(
hi

(z − zi)2
+

1

z − zi
∂i

)
〈φ1(z1)...φn(zn)〉

5.3 The TT OPE and the Central Charge

Unfortunately, we cannot use this result to calculate the T (z)T (w) OPE, as T is not
a primary field, so does not transform in the necessary way. We can, however, do the
following expansion (as we showed in 5 that T (z) is holomorphic):

T (z) =
∑
n∈Z

z−n−2Ln (14)

where the labelling of the Laurent modes will soon become clear. Choosing ε(z) =
−εnzn+1:

Qn =
1

2πi

∮
dzT (z)(−εnzn+1)

= −εnLn
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so we have that the Laurent modes of T (z) are the generators of the conformal transfor-
mations, and as such must obey the Virasoro algebra.
We will use this fact to verify the following expression for the singular part of the
T (z)T (w) OPE:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ ...

Inverting 14 we get:

Ln =
1

2πi

∮
dzzn+1T (z)

therefore

[Lm, Ln] =
1

2πi

∮
dzzm+1 1

2πi

∮
dwwn+1[T (w), T (z)]

= − 1

2πi

∮
C(0)

dzzm+1 1

2πi

∮
C(z)

dwwn+1R(T (w)T (z))

= − 1

2πi

∮
C(0)

dzzm+1 1

2πi

∮
C(z)

dwwn+1

(
c/2

(w − z)4
+

2T (z)

(w − z)2
+
∂zT (z)

w − z

)
with the second integral being taken around z fixed (due to the radial ordering), and the
first around the origin. Note that the OPE is an expansion in w − z, as here we have
taken |w| > |z|. We want the contour around z to be taken anticlockwise, so we must
introduce a minus sign. Also note that for brevity, we have omitted the ellipses denoting
the non-singular terms as they will note contribute.
We now pick out the residues to do the first integral. To do so, we must expand wn+1 as
follows:

wn+1 = (z + w − z)n+1

=
n+1∑
k=0

(
n+ 1

k

)
zn+1−k(w − z)k

Using this, and taking each term separately:

− 1

2πi

∮
C(0)

dzzm+1 1

2πi

∮
C(z)

dw

n+1∑
k=0

(
n+ 1

k

)
zn+1−k

(
c/2

(w − z)4−k

)
=− 1

2πi

∮
C(0)

dzzm+1

(
n+ 1

3

)
zn−2 c

2

=− 1

2πi

∮
C(0)

dzzm+n−1 (n+ 1)(n)(n− 1)

6

c

2

=− c

12
(n)(n2 − 1)δm+n,0

=
c

12
(m)(m2 − 1)δm+n,0
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Here we replaced n with −m as these are equal whenever the δm+n,0 is non-zero.

− 1

2πi

∮
C(0)

dzzm+1 1

2πi

∮
C(z)

dw

n+1∑
k=0

(
n+ 1

k

)
zn+1−k

(
2T (w)

(w − z)2−k

)
=− 1

2πi

∮
C(0)

dzzm+1

(
n+ 1

1

)
zn(2T (w))

=− 2(n+ 1)

2πi

∮
C(0)

dzzm+n+1T (w)

=− 2(n+ 1)Lm+n

− 1

2πi

∮
C(0)

dzzm+1 1

2πi

∮
C(z)

dw

n+1∑
k=0

(
n+ 1

k

)
zn+1−k

(
∂wT (w)

(w − z)1−k

)
=− 1

2πi

∮
C(0)

dzzm+1

(
n+ 1

0

)
zn+1∂wT (w)

=− 1

2πi

∮
C(0)

dzzm+n+2∂wT (w)

=
m+ n+ 2

2πi

∮
C(0)

dzzm+n+1T (w)

=(m+ n+ 2)Lm+n

Here we integrated by parts.

Finally, we obtain the result:

[Lm, Ln] = (m+ n+ 2)Lm+n − 2(n+ 1)Lm+n +
c

12
(m)(m2 − 1)δm+n,0

= (m− n)Lm+n +
c

12
(m)(m2 − 1)δm+n,0

This justifies our claim, which we repeat here:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ ...

This can be calculated using Wick’s theorem for a given energy-momentum tensor; for
example, the free boson has c = 1 and the free fermion has c = 1

2
. See section 5.3 of [3]

for details.

5.4 Calculating Correlators of Descendant Fields

We now have the necessary machinery to attack the correlators of descendant fields.
Descendant states are obtained from a primary state by acting on them with the Ln. We
have shown that the coefficients of the Laurent modes of the energy-momentum tensor
ast as the raising operators of our highest weight representation of the Virasoro algebra.
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We have defined the descendant fields as those that appear in the the Tφ OPE, expanded
about z:

T (ζ)φ(z) =
∑
n∈Z

Lnφ(z)

(ζ − z)n+2

Each descendant field has a clear correspondence to the descendant states found by acting
of the highest weight state with the Ln. This can inverted using a contour integral to
obtain an expression for Lnφ.

Lnφ(z) =
1

2πi

∮
z

dζ(ζ − z)n+1T (ζ)φ(z)

Notice that for L−2 acting on the identity field, we obtain T (w) (as T is holomorphic);
thus, T itself is a descendant of the identity field.

Consider the correlator of some descendant of φ1(z) with φ2(w) (φ1 and φ2 being pri-
mary). We can express Ln in terms of T (z) as follows:

〈(Lnφ1(z))φ2(w)〉 =
1

2πi

∮
z

dζ(ζ − z)n+1〈T (ζ)φ1(z)φ2(w)〉

where the contour of integration circles z, and not w. We can expand and reverse the
contour, taking it past infinity on the Riemann sphere and wrapping it around w to
obtain:

〈(Lnφ1(z))φ2(w)〉 = − 1

2πi

∮
w

dζ(ζ − z)n+1〈T (ζ)φ1(z)φ2(w)〉

At which point we use the Tφ OPE:

〈(Lnφ1(z))φ2(w)〉 = − 1

2πi

∮
w

dζ(ζ − z)n+1

〈(
h2

(ζ − w)2
+

1

ζ − w
∂w

)
φ1(z)φ2(w)

〉
If instead of a single primary φ2, we had a string of primaries, this would be a sum of
integrals. In each, the OPE would be taken with the φ evaluated at the center of the
contour of integration.

Now, using (ζ − z)n+1 = (w − z)n+1 + (n+ 1)(w − z)n(ζ − w) + ... and noticing that
the higher order terms will not contribute:

〈(Lnφ1(z))φ2(w)〉 (15)

= − 1

2πi

∮
w

dζ
(

(w − z)n+1 + (n+ 1)(w − z)n(ζ − w)
)〈( h2

(ζ − w)2
+

1

ζ − w
∂w

)
φ1(z)φ2(w)

〉
= − 1

2πi

∮
w

dζ
(

(w − z)n+1 + (n+ 1)(w − z)n(ζ − w)
)( h2

(ζ − w)2
+

1

ζ − w
∂w

)
〈φ1(z)φ2(w)〉

= − 1

2πi

∮
w

dζ

(
(w − z)n+1 1

ζ − w
∂w + (n+ 1)(w − z)n

h2

ζ − w

)
〈φ1(z)φ2(w)〉

= −
(
(w − z)n+1∂w + (n+ 1)(w − z)nh2

)
〈φ1(z)φ2(w)〉
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This procedure can easily be extended to some string of primary fields, instead of just
φ2. Instead of the differential operator − ((w − z)n+1∂w + (n+ 1)(w − z)nh2) we obtain
a sum of such terms, over the positions of the fields and their conformal dimension.

We can also use this procedure on a correlator of a number of descendant fields, us-
ing the TT OPE, though this calculation can quickly become quite expansive.

5.5 The φφ OPE

Here we shall see more of the remarkable power of the OPE: by expanding the product
of two fields into a sum of local fields, we can reduce a 4-point correlator to a sum of
3-point or 2-point functions. Let us make the following ansatz as to the form of the OPE
of two chiral primary fields:

φi(z)φj(w) =
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂nφk(w)

where k labels the primary and quasi-primary fields, and ∂nφk gives us the descendants
of those fields obtained by acting with L−1. We only need these descendants as we are
summing over all quasi-primaries, as well as all primaries, and we can always write any
other descendant as a combination of quasi-primaries and Ln−1 descendants. The Ck

ij are
constants which do not depend on n, such that the anijk are 1 for n = 0 (n is an index, not
a power). Our guess is less arbitrary than it may appear; we can put powerful constraints
on this expansion by using the differential equations 12, which we repeat here:

L−1φ =
∑
i

∂iφ

L0φ =
∑
i

(zi∂i + hi)φ

L1φ =
∑
i

(z2
i ∂i + 2hizi)φ

Recall that the first equation encodes translational invariance. This constrains the coef-
ficients in the expansion to only depend on z − w.
The second is scaling invariance, which forces us to choose the correct powers of the di-
mensionful quantities; φi(z)φj(w) has scaling dimension hi + hj, so our expansion should
too. The fields on the RHS have scaling dimension hk + n, so the exponent of the z − w
factor must cancel this.
Finally, applying the final equation and enforcing invariance under SCTs will give us
the form of the anijk. The Ck

ij turn out to be familiar theory dependent quantities, the
3-point function structure constants. This is found by substituting the above for a pair
of fields in the 3-point correlator and using the explicit expression for the resulting sum
of 2-point functions. We will not present this here, but merely mention that the identity
(1 + x)−p =

∑∞
n=0(−1)n

(
p+n−1
n

)
xn is necessary to correctly match the zi.

It is also interesting to consider using this expansion in the 2-point function. This will
result in a sum of 1-point functions, all of which will vanish except for the identity field,
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which has h = 0. We therefore obtain:

δhi,hj
(z1 − z2)2hi

=
C0
ij

(z − w)hi+hj

so C0
ij = δhi,hj , as expected.

Before applying L1, we will demonstrate the method with the simpler L−1. The method
consists of insisting that use of the OPE commutes with the application of each of the
above operators. In the first instance we will apply L−1 to φi(z)φj(w), and then expand
using our OPE.

L−1(φi(z)φj(w)) =(∂z + ∂w)φi(z)φj(w)

=(∂z + ∂w)

(∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂nφk(w)

)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(−hi − hj + hk + n)(z − w)−hi−hj+hk+n−1∂nφk(w)

−
∑
k,n≥0

Ck
ija

n
ijk

n!
(−hi − hj + hk + n)(z − w)−hi−hj+hk+n−1∂nφk(w)

+
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂n+1φk(w)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂n+1φk(w)

Now we will expand using our OPE, and then apply L−1:

L−1(φi(z)φj(w)) =L−1

(∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂nφk(w)

)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+nL−1 (∂nφk(w))

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂n+1φk(w)
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We see that the constraint is indeed satisfied. Now, the slightly less trivial but certainly
more interesting constraint:

L1(φi(z)φj(w)) =(z2∂z + 2hiz + w2∂w + 2hjw)φi(z)φj(w)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z2∂z + w2∂w)(z − w)−hi−hj+hk+n∂nφk(w)

+
∑
k,n≥0

Ck
ija

n
ijk

n!
(2hiz + 2hjw)(z − w)−hi−hj+hk+n∂nφk(w)

+
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+nw2∂n+1φk(w)

The first term simplifies to:

∑
k,n≥0

Ck
ija

n
ijk

n!
(z2 − w2)(−hi − hj + hk + n)(z − w)−hi−hj+hk+n−1∂nφk(w)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z + w)(−hi − hj + hk + n)(z − w)−hi−hj+hk+n∂nφk(w)

This can be combined with the second term:

L1(φi(z)φj(w)) =
∑
k,n≥0

Ck
ija

n
ijk

n!

[
(z + w)(−hi − hj + hk + n) (16)

+ 2hiz + 2hjw
]
(z − w)−hi−hj+hk+n∂nφk(w)

+
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+nw2∂n+1φk(w)

Now we will expand using our OPE, and then apply L1:

L1(φi(z)φj(w)) =L1

(∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n∂nφk(w)

)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+nL1 (∂nφk(w))

But what is L1∂
nφk(w)? We must be wary here; we need to calculate the action of L1

on the nth descendant of φk(w). This amounts to calculating L1L
n
−1φk(w), which we can
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do using the same relation we used in calculating 12:

L1L
n
−1φk(w) = (Ln−1L1 + 2nLn−1

−1 L0 + (n)(n− 1)Ln−1
−1 )φk(w)

= (Ln−1(w2∂ + 2hkw) + 2nLn−1
−1 (hk + w∂) + (n)(n− 1)∂n−1)φk(w)

= ((w2∂ + 2hkw)Ln−1 + 2n(hk + w∂)Ln−1
−1 + (n)(n− 1)∂n−1)φk(w)

= ((w2∂ + 2hkw)∂n + 2n(hk + w∂)∂n−1 + (n)(n− 1)∂n−1)φk(w)

= (w2∂n+1 + 2(hk + n)w∂n + (2nhk + n2 − n)∂n−1)φk(w)

We can immediately note that the w2 term here matches the w2 term in 16 exactly.
Matching the remainder of the terms, we approach the final stretch; in the following, the
∂n−1 term on the RHS should only be summed for n ≥ 1, but for ease of notation we
leave this implicit.∑

k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n

(
(z + w)(−hi − hj + hk + n) + 2hiz + 2hjw

)
∂nφk(w)

=
∑
k,n≥0

Ck
ija

n
ijk

n!
(z − w)−hi−hj+hk+n

(
2(hk + n)w∂n + (2nhk + n2 − n)∂n−1

)
φk(w)

This must be true for each φk individually, so:∑
n≥0

anijk
n!

(z − w)n
(

(z + w)(hk + n) + (hi − hj)(z − w)
)
∂nφk(w)

=
∑
n≥0

anijk
n!

(z − w)n
(

2(hk + n)w∂n + (2nhk + n2 − n)∂n−1
)
φk(w)

which is equivalent to:∑
n≥0

anijk
n!

(z − w)n(z − w)(hk + n+ hi − hj)∂nφk(w)

=
∑
n≥1

anijk
n!

(z − w)n(2nhk + n2 − n)∂n−1φk(w)

Now, reindexing:∑
n≥0

anijk
n!

(z − w)n+1(hk + n+ hi − hj)∂nφk(w)

=
∑
n≥0

an+1
ijk

(n+ 1)!
(z − w)n+1(2(n+ 1)hk + (n+ 1)2 − n− 1)∂nφk(w)

We can now, finally, match terms:

anijk(hk + n+ hi − hj) =
an+1
ijk

n+ 1
(2(n+ 1)hk + n(n+ 1))

=⇒ anijk(hk + n+ hi − hj) = an+1
ijk (2hk + n)

=⇒ an+1
ijk =

(
hi − hj + hk + n

2hk + n

)
anijk
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The solution of this, given that a0
ijk = 1 is

anijk =
(hk + hi − hj)n

(2hk)n

where (a)n = (a)(a+ 1)...(a+ n− 1) is the Pochhammer symbol.

5.6 Constraints From Null Vectors

Let us return for a moment to representation theory, to see what these results imply.
Say we have a theory with some central charge c, and some primary field φ with weight

h = 1
16

(
5− c±

√
(c− 1)(c− 25)

)
. Then, as shown in 3.3 there exists a null vector of

weight 2:

|χ〉 =

(
−4h+ 2

3
L−2 + L2

−1

)
|h〉

What does this mean in terms of our fields? We know that this vector has a vanishing
inner product with every other vector in the representation. For our fields, this implies
that the correlator of a null vector with any number of other fields will vanish. Consider,
then, the 3-point function of χ with two primaries:

〈χ(z)φ1(z1)φ2(z2)〉

This must vanish, as χ is null. However, as χ is a descendant of a primary, we can use
the relation found in 5.4 to express this correlator as a differential operator acting on the
correlator of primaries. Thus, we must have that:(

−4h+ 2

3

2∑
i=1

(
(z − zi)−1∂i + (z − zi)−2hi

)
+ ∂2

z

)
〈φ(z)φ1(z1)φ2(z2)〉 = 0

If we use the explicit form of the 3-point function, after some quite tedious calculation
we arrive at a relation between h, h1 and h2:

(4h+ 2)(h+ 2h2 − h1) = 3(h− h1 + h2)(h− h1 + h2 + 1)

=⇒ h2 =
2h+ 6h1 + 1

6
± 1

6

√
(2h+ 6h1 + 1)2 + 12(h2 − 3h2

1 + 2hh1 + h1 − h)

The 3-point function of any triplet of fields not obeying this constraint must vanish. But,
as we saw above, the structure constants of the 3-point functions enter into the φφ OPE.
So, if h2 is not of the above form, it cannot appear in the φφ1 OPE. The existence of a
null vector places new constraints on the structure constants, and therefore restricts the
fields which may enter into the OPE. We can place further restrictions by condsidering
that the order of the fields we expand should not matter; the same fields should appear
in φφ1 as in φ1φ, so fields ruled out in either are ruled out in both.
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These are important results, and can be pushed further; in the case of the minimal
models, these rules as to which fields may appear in the OPE are enough so show that we
can have a theory with finitely many fields, which is closed under expansion in an OPE.
This process is known as fusion, and the rules derived from the existence of null vectors
are known as fusion rules.
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6 The 4-Point Correlator

6.1 4-point Correlator as a Series

Let us now use the φφ expansion as a tool to attack the 4-point function. We will examine
the case of four identical fields φ of weight h:

〈φ(z1)φ(z2)φ(z3)φ(z4)〉

To do this, we will expand the first pair of fields and the second pair of fields, then use
the explicit form of the 2-point function on the result. Our OPE will involve descendants
of the field, so to begin we will work out the correlator of two descendants. Recalling 13
and 15:

〈φi(z)φj(w)〉 =
δhi,hj

(z − w)2hi

=⇒ 〈∂nz φi(z)∂mw φj(w)〉 = ∂nz ∂
m
w

δhi,hj
(z − w)2hi

=⇒ 〈∂nz φi(z)∂mw φj(w)〉 = (−1)n
δhi,hj

(z − w)2hi+m+n
(2hi)m+n

Now, the OPE for identical fields, defining Ck ≡ Ck
φφ and ank ≡ anφφk:

φ(z)φ(w) =
∑
k,n≥0

Cka
n
k

n!
(z − w)−2h+hk+n∂nφk(w)

So:

〈φ(z1)φ(z2)φ(z3)φ(z4)〉 =〈∑
k,n≥0

Cka
n
k

n!
(z12)−2h+hk+n∂n2φk(z2)

∑
l,m≥0

Cla
m
l

m!
(z34)−2h+hl+m∂m4 φl(z4)

〉

=
∑
k,n≥0

Cka
n
k

n!
(z12)−2h+hk+n

∑
l,m≥0

Cla
m
l

m!
(z34)−2h+hl+m 〈∂n2φk(z2)∂m4 φl(z4)〉

=
∑
k,n≥0

Cka
n
k

n!
(z12)−2h+hk+n

∑
l,m≥0

Cla
m
l

m!
(z34)−2h+hl+m

(−1)nδhl,hk
(z24)2hk+m+n

(2hk)m+n

=
1

(z12z34)2h

∑
k,n≥0

∑
m≥0

(
z12z34

z2
24

)hk C2
ka

n
ka

m
k

n!m!
zn12z

m
34

(−1)n

zm+n
24

(2hk)m+n

While this expression manifestly has the correct behaviour under translations, rotations
and dilations it is not at all obvious that it is fully conformally invariant. In the next
section we will attempt to sum part of this series, to obtain an explicit dependence on
the cross-ratio.

34



6.2 Summing the Series: The Hypergeometric Function

Consider the terms multiplying the structure constants:

∑
n≥0

∑
m≥0

(
z12z34

z2
24

)hk (hk)n
(2hk)n

(hk)m
(2hk)m

(2hk)m+n

n!m!
zn12z

m
34

(−1)n

zm+n
24

(17)

We will use the identity (proven by Adam Keilthy):

(a+ b)n(a+ c)n
(a+ b+ c)n

=
n∑
r=0

nCr
(a)n−r(b)r(c)r
(a+ b+ c)r

(18)

with a = hk +m, b = −m and c = hk.

To prove this identity we will need to use the Euler transformation for the hypergeo-
metric function. The hypergeometric function is defined as:

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(19)

The Euler transformation is as follows:

2F1(u, v;w; z) = (1− z)w−u−v2F1(w − u,w − v;w; z) (20)

Finally, we will also need the generating function for the Pochhammer symbol:

1

(1− z)a
=
∞∑
n=0

(a)n
zn

n!

We begin by multiplying the LHS of 18 by zn

n!
and summing over all n:

∞∑
n=0

(a+ b)n(a+ c)n
(a+ b+ c)n

zn

n!
= 2F1(a+ b, a+ c; a+ b+ c; z)

= (1− z)−a2F1(c, b; a+ b+ c; z)

=
∞∑
n=0

(a)n
zn

n!

∞∑
r=0

(b)r(c)r
(a+ b+ c)r

zr

r!

=
∞∑
r=0

(b)r(c)r
(a+ b+ c)r

zr

r!

∞∑
n=r

(a)n−r
zn−r

(n− r)!

=
∞∑
n=0

n∑
r=0

nCr
(a)n−r(b)r(c)r
(a+ b+ c)r

zn

n!

We can differentiate each side multiple times with respect to z, then set z to 0, and thus
prove 18 for any n.
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In our case, with a = hk +m, b = −m and c = hk, we find:

(hk)n(2hk +m)n
(2hk)n

=

min(m,n)∑
r=0

nCr
(hk +m)n−r(−m)r(hk)r

(2hk)r

Using that (2hk +m)n = (2hk)m+n

(2hk)m
, and similar manipulations:

(hk)n(hk)m(2hk)m+n

(2hk)n(2hk)mn!m!
=

min(m,n)∑
r=0

(hk)m+n−r(hk)r(−1)r

(2hk)rr!(n− r)!(m− r)!

Inserting this in 17:

∑
n≥0

∑
m≥0

(
z12z34

z2
24

)hk min(m,n)∑
r=0

(hk)m+n−r(hk)r(−1)r

(2hk)rr!(n− r)!(m− r)!
zn12z

m
34

(−1)n

zm+n
24

=

(
z12z34

z2
24

)hk∑
r≥0

∑
n≥r

∑
m≥r

(−1)r

r!

(hk)m+n−r(hk)r
(2hk)r(n− r)!(m− r)!

zn12z
m
34

(−1)n

zm+n
24

=

(
z12z34

z2
24

)hk∑
r≥0

∑
n≥0

∑
m≥0

(−1)r

r!

(hk)m+n+r(hk)r
(2hk)rn!m!

zn+r
12 zm+r

34

(−1)n+r

zm+n+2r
24

=
∑
r≥0

(
z12z34

z2
24

)hk+r
(hk)r
r!(2hk)r

∑
n≥0

(−1)n

n!

(
z12

z24

)n∑
m≥0

(hk)m+n+r

m!

(
z34

z24

)m
=
∑
r≥0

(
z12z34

z2
24

)hk+r
(hk)r
r!(2hk)r

∑
n≥0

(−1)n(hk)n+r

n!

(
z12

z24

)n∑
m≥0

(hk + n+ r)m
m!

(
z34

z24

)m
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Recognising the generating function for the Pochhammer we get:

=
∑
r≥0

(
z12z34

z2
24

)hk+r
(hk)r
r!(2hk)r

∑
n≥0

(−1)n(hk)n+r

n!

(
z12

z24

)n(
1−

(
z34

z24

))−hk−n−r
=
∑
r≥0

(
z12z34

z24(z24 − z34)

)hk+r
(hk)r
r!(2hk)r

∑
n≥0

(−1)n(hk)n+r

n!

(
z12

z24

)n(
z24

z24 − z34

)n
=
∑
r≥0

(
z12z34

z24z23

)hk+r
(hk)r
r!(2hk)r

∑
n≥0

(−1)n(hk)n+r

n!

(
z12

z24

)n(
z24

z23

)n
=
∑
r≥0

(
z12z34

z24z23

)hk+r
(hk)r(hk)r
r!(2hk)r

∑
n≥0

(−1)n(hk + r)n
n!

(
z12

z24

)n(
z24

z23

)n
=
∑
r≥0

(
z12z34

z24z23

)hk+r
(hk)r(hk)r
r!(2hk)r

(
1 +

z12

z23

)−hk−r
=
∑
r≥0

(
z12z34

z24z23

)hk+r
(hk)r(hk)r
r!(2hk)r

(
z23

z13

)hk+r

=
∑
r≥0

(
z12z34

z24z13

)hk+r
(hk)r(hk)r
r!(2hk)r

We recognise this coefficient from the definition of the hypergeometic function 2F1(hk, hk; 2hk;u).
This matches the result in the literature:

〈φ(z1)φ(z2)φ(z3)φ(z4)〉 =
1

(z12z34)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk;u)

This is a function of only the cross-ratio u = z12z34
z13z24

and so manifestly conformally invariant.

6.3 A New Constraint: Crossing Symmetry

Let us examine this expression further.

〈φ(z1)φ(z2)φ(z3)φ(z4)〉 =
1

(z12z34)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk;u)

The 2F1(hk, hk; 2hk;u) terms are known as the conformal blocks. It is remarkable
that the dependence of the 4-point correlator on the conformal dimension of the summed
primary fields reduces to a known function, multiplied by some constants. In fact, as the
Ck are the structure constants from the 3-point correlator, we know they must be real;
we know, therefore, that C2

k is positive.

We stated that the OPE algebra must be associative, but we have not yet used this
fact. Above, we used the OPE of the first pair and the last pair of fields; we could in-
stead have used the OPE of φ2 with φ3 first. This is known as crossing symmetry. In
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terms of the resulting expression, this amounts to swapping φ2 with φ4. The new cross
ratio is then:

v =
z14z32

z13z42

However, we can notice:

1− v = 1− z14z32

z13z42

=
z13z42 − z14z32

z13z42

=
(z1z4 − z1z2 − z3z4 + z3z2)− (z1z3 − z1z2 − z4z3 + z4z2)

z13z42

=
z1z4 + z3z2 − z1z3 − z4z2

z13z42

=
z12z43

z13z42

=
z12z34

z13z24

= u

so we obtain an interesting constraint on the structure constants:

1

(z12z34)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk;u) =

1

(z14z32)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk; 1− u)

⇐⇒ (z13z24)2h

(z12z34)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk;u) =

(z13z24)2h

(z14z32)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk; 1− u)

⇐⇒ (1− u)2h
∑
k≥0

C2
k2F1(hk, hk; 2hk;u) = (u)2h

∑
k≥0

C2
k2F1(hk, hk; 2hk; 1− u)

⇐⇒
∑
k≥0

C2
k

(
(1− u)2h

2F1(hk, hk; 2hk;u)− u2h
2F1(hk, hk; 2hk; 1− u)

)
= 0

This is a continuously infinite set of equations, with associativity of the OPE built in.
These equations are of a form that allows information about possible unitary conformal
field theories to be obtained, using methods of linear programming; see [5] for a good
introduction to this. The method as a whole is known as the conformal bootstrap; see
[4] for an introduction.
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7 Further Research

From this point, there are many avenues of further exploration. Using the linear pro-
gramming methods mentioned above, one can find bounds for operator dimensions. For
example, given the operator of smallest dimension in the theory, an upper bound can be
found for the dimension of the operator of second smallest dimension. Interestingly, this
bound shows a kink at the dimension of the σ field of the critical Ising model.
The bounds can be improved by considering other correlators; above we only considered
the 4-point function of identical fields, but conformal blocks can be found for mixed corre-
lators too, and new, stronger bounds derived from this. Using these bounds one can look
for more kinks, or other phenomena (like minima in the OPE coefficients) which occur
at the Ising model, and the other minimal models. One can then extend this to higher
dimensions, looking for similar phenomena in results obtained by applying conformal
bootstrap methods, hinting at possible unitary conformal field theories.
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