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Introduction
What is a conformal field theory?
A quantum field theory in which, instead of
looking at an action, we examine how things
change under conformal transformations.

Why should we care?
It’s powerful; these considerations let us fix
the forms of the correlators and (through
unitarity, which we want for sensible physics)
restrict the possible structure constants.
It can even, in two dimensions, result in
something very rare, and certainly worth
investigating: an exactly solvable quantum
field theory.

Conformal Transformations
What links these transformations?
They are angle preserving , but can warp lines
and distances arbitrarily. Forcing our theory to
be invariant under these transformations means
the physics doesn’t care what scale we
observe it at. Imagine quantum mechanics,
or galactic dynamics, applying at every scale!

Our theory should be invariant under:

• The usual Poincaré transformations:
translations, rotations and boosts.

• Dilations of the coordinates.

• The special conformal transforma-
tions (SCTs).

An SCT is an inversion of the coordinates,
followed by a translation, followed by another
inversion.

Figure 1: Image of a grid under an SCT. Note that
the lines remain perpendicular.

Do any systems actually satisfy this?
The Ising model at its critical point has
the same fluctuations at all length scales, as it
passes from the low-order to high-order phases.

Why is 2D special?
The meromorphic functions are locally con-
formal. This means we can use the structure
of their generators, the Witt algebra , and
its central extension, the Virasoro algebra .
It is this structure which allows for an exact
solution, letting us calculate all the correlators
between all the fields.

Fields and their Products
We use complex coordinates, z and z̄ (though in the following only z dependence is explicit).

Primary fields: Under a conformal transformation primary fields transform with a factor of
(
∂f
∂z

)h
,

where h is the conformal weight of the field. This property tells us how the correlators of these
fields transform; from this, we can deduce their explicit forms. For example, the 2-point
function:

〈φ1(z)φ2(w)〉 =
δh1,h2

(z − w)2h1

• Both sides are manifestly translation invariant.

• h1 = h2 ensures that both sides transform the same way under inversions.

• Both sides scale with λ−2h1 (dilation: λ ∈ R, λ > 0, rotation λ = eiθ).

Operator Product Expansion (OPE): We assume a product of fields (inside a correlator) can
be written as a sum of local fields. Very useful; we use it to go from n-point to (n-1)-point
correlators.

Using the OPE
Energy-Momentum Tensor: In a 2D CFT, there are only two components, T (z) and T̄ (z̄). We

can expand in Laurent modes which, due to their relation to the symmetry generators, obey
the Virasoro algebra (with central charge, c, theory dependent):

T (z) =
∑
n∈Z

z−n−2Ln, [Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (1)

Descendant Fields: The descendant fields are those that appear in the OPE of a primary field with
the energy-momentum tensor. Using 1 the correlator of a descendant Lnφ1 with a primary φ2
can be found in terms of the correlator of primaries (see [1] for extensions):

〈(Lnφ1(w))φ2(z)〉 = −
(
(z − w)n+1∂z + (n+ 1)(z − w)nh2

)
〈φ1(w)φ2(z)〉

Solving the Theory
What if the OPE forces us to consider infinitely many fields? Only certain conformal weights
and central charges are consistent with finitely many primary fields. Eg. 2D critical Ising model
(c = 1

2 ): the identity (h1 = 0), the spin field σ (hσ = 1
16 ) and the energy field ε (hε = 1

2 ). These
closed theories are known as the minimal models; we have explicit formulas for them due to Kac:

c = 1− 6

m(m+ 1)
, hr,s =

((m+ 1)r −ms)2 − 1

4m(m+ 1)

with 1 ≤ r < m, 1 ≤ s < r and m an integer greater than 2 [2]. This result of Kac comes from
considering certain objects known as singular vectors; they are descendants that act like new primary
states. These objects can consistently be set to zero, causing all their descendants to vanish;
in the minimal models, this leaves only finitely many fields.

The Conformal Bootstrap
The above results were obtained by unitarity arguments using the Virasoro algebra; powerful, but
restricted to 2D. Results in other dimensions can be obtained by enforcing associativity of the
OPE, by a numerical procedure known as the conformal bootstrap [3]. Given a field of lowest
dimension, this method places an upper bound on the dimension of the next lowest field.

Figure 2: hε upper bound kink (left); ε OPE coeff minimum (right)

Interestingly, the graph of this upper bound shows a kink at the dimensions of the Ising model,
and the graph of the OPE coefficient of this field shows a minimum. By studying how these graphs
behave around exactly known solutions in 2D (the Ising model and the other minimal models), it is
possible we will learn more about the possible conformal dimensions of higher dimensional theories.
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